Prevalence of Portal Vein Thrombosis Following Umbilical Catheterization in Neonatal Period

1Department of Gastroenterology, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran. 2Department of Gastroenterology, Faculty of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran. 3Department of Radiology, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran. 4Department of Neonatology, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran. 5Department of Neonatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. 6Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran. 7Department of Neonatology, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran. 8Department of Pediatric, Faculty of Medicine, Islamic Azad University – Mashhad Branch, Mashhad, Iran.

Abstract

Introduction: Portal venous thrombosis (PVT) is one of the most common causes of extrahepatic portal hypertension in children that may be occurring following umbilical venous catheterization or omphalities during neonatal period. We investigated the effects of umbilical cauterization during neonatal period on portal vein thrombosis.

Materials and Methods: This study investigated the frequency of thrombosis of portal vein in term or preterm infants following umbilical catheterization by color doppler ultrasound. Fifty neonates who had age range (3.6± 8) days and birth weights 1250-4230 gram were recruited for this study and umbilical venous catheters were placed on neonates. All parents of these neonates signed a consent form. Color doppler ultrasound sonography of the portal vein was performed by two expert radiologists within 3 days following umbilical cauterization and serially for at least a period of 6 months intervals up to 3 years (6 times for each case). Ten children were excluded from the study because of lack of follow up. Forty children completed the study.

Results: From total of 40 subjects, portal vein thromboses were detected in two children (1 girl, 1 boy) with age 2.5 and 1.5 years respectively. In these two children, other clinical signs of portal vein thrombosis manifested such as esophageal and stomach varices and splenomegaly confirmed by endoscopy. In all the other children, the physical examinations and ultrasounds were normal during 6 stages.

Conclusion: It is recommended that care be exercised during cauterization placement in order to prevent thrombosis of the portal vein from occurring.

Keywords: Neonate, Portal venous thrombosis, Umbilical vein catheterization

Introduction
The umbilical vein is one of the most commonly used vascular routes in neonates (1,2). Umbilical vein catheterization has become a common bedside procedure in the neonatal at the intensive care units following significant increase in the number of
premature babies (2). In the UK approximately 250000 intravascular catheters are used per year (3). Sepsis is one of the complications of the catheterization that is accompanied by with high mortality and morbidity. Infection can be localized at the site of insertion where the catheter enters the patient’s skin or can be systemic with bacteremia leading to septicemia (4,5).

Vein cauterization is associated with complications such as catheter malposition, thrombosis, phlebitis, venous perforation, dysrhythmias, pleural and pericardial effusions (6-9). The skill of physician is a significant consideration in umbilical catheterization. Several drugs can be given through an endotracheal tube with some require intravenous administration. The umbilical vein is a suitable route of administration (10). The purpose of this study was to investigate the thrombotic complications of catheterization in the preterm and term neonates.

Materials and Methods

Subjects: This study was performed from December 2008 to April 2011 following ethical approval by Tehran University Ethical Committee. Upon receipt of an informed written consent from parents, 40 neonates with umbilical venous catheter who had been admitted to neonatal intensive care unit or neonatal ward were included. Fifty neonates (28 girls, 22 boys, with aged 8 days to 36 months) who required exchanging transfusions were recruited. Mean age of infants was 8±3.6 days and birth weights between 1250 to 4230 grams. The newborns with cardiac heart disease or with omphalocle were excluded. The duration of follow-up ranged from 6 to 36 months. Ten infants were lost to follow-up and therefore excluded.

Study Design: Single lumen umbilical venous catheters (3.5 or 5.0 French) were inserted on NICU or neonatal department during admission. Abdominal sonography and color doppler of the portal vein were performed by a 7.5 MHZ transducer within 3 days following catheter placement and serially for at least 6 months intervals up to 3 years (6 times for each child). In each sonography we evaluated the port vein’s condition (open or closed), the existence of thrombosis, port vein size and diameter, spleen and liver echogenicity and existence of ascites by two expert radiologists.

Statistics Analysis: Data analyzed using SPSS version 15 and descriptive statistics.

Results

Among 40 children were studied, portal vein thrombosis were detected by radiologist color doppler ultrasound. Signs and symptoms of portal hypertension were observed in two children (1 girl, 1 boy) with age 2.5 and 1.5 years respectively (fig 1).

![Color doppler of a portal venous thrombus in a case with 2.5 years old.](image)

These two patients were found in the fourth and fifth stages. Coagulation disorder was not found in these two children (protein C, S-negative). Wall and lumen of portal and umbilical vein was normal by color doppler sonography in other children. In endoscopic evaluations, esophageal and stomach varices grade I, II were observed in a 2 year old girl. Splenomegaly was found in an 18 month old boy. Presence of portal vein thrombosis confirmed by color doppler sonography. All stages of sonography were done by two experienced radiologists. Spleen and liver
echogenicity were normal in other children and also there was no indication of ascites existence (fig 2).

Occlusion of a portal vessel causes congestion of the organs it drains, with increased venous pressures and the development of collateral circulation and hepatosplenomegaly. It can also reduce hepatic perfusion by as much as 2/3 (11). The frequency of thrombosis resulting from catheterization is almost 4 percent. Moreover, we observed that possibility of thrombosis increased with the growth of the infants. This study is still on progress since we continue to follow up cases.

Discussion

The result of the present study showed that the prevalence of portal vein thrombosis following catheterization of the umbilical vein during the neonatal period is 4% of children. An investigation by Schmit and colleagues reported the incidence of portal vein thrombosis in 2.4 per 1000 of neonates admitted to NICU (12). Another publication by Nowak-Gottl reported the incidence of thrombotic events in 5.1 per 100,000 deliveries (13). Autopsy findings indicated umbilical vein thrombosis from 3% to 30% while clinical studies found catheter-related thrombosis in 13% to 30% of newborns (14, 15). Morag et al. in 2011 reported that 73% of children with portal vein thrombosis had a history of umbilical catheter in situ (16). However, the studies did not observe a thrombus in their study population. For example, a study by Guimarães investigated whether umbilical venous cauterization causes the development of thrombosis in neonates. Forty neonates (16 girls and 24 boys) with exchanging transfusions due to severe hyperbilirubinemia were included. All cases were identified as normal using sonographic, laboratory and clinical investigations except for 3 children. It might be due to short-term placement catheterization that was only 120 minutes (17). Guimarães concluded that umbilical cauterization seldom causes portal vein thrombosis, risk factors such as umbilical infections and trauma following cauterization should be investigated (17).

Schwartz et al reported the prevalence of portal vein thrombosis 1.3% following umbilical venous cauterization (1). Differences in the prevalence of portal vein thrombosis may be due to physician's skill during umbilical cauterization. Although congenital thrombophilia events were reported not to be related with venous
thrombosis (18), but some studies have shown an increased rate of congenital thrombophilia in newborns with catheter-related thrombosis (19). Another study in Toronto investigated complication rates of the umbilical catheter in 133 infants (20). Their findings demonstrated an association between the incidence of portal vein thrombus, time of placed umbilical catheter and severity of thrombus. There were no remarkable effects on study outcome after anticoagulation treatment (20). In studies, sonography was known as a useful method for detection of thrombosis events in short and long term. This approach is consistent with the findings by Guimaraes and Moreau Doppler ultrasound used for recognizing progression of thrombosis in neonates (17,20).

Even a small venous thrombosis may lead to complications, therefore prevention of thrombosis events should be considered as a valuable strategy. The likelihood of venous thrombosis could be decreased by elevated umbilical positioning and single lumen construction. In addition, a reduction in period of catheterization and usage of heparin coated catheters are useful for prevention of thrombosis.

Overall, long term follow up is required for early diagnosis of thrombosis. It is recommended that physician’s perform the cauterization placement carefully so as to prevent thrombosis of the portal vein from occurring.

Acknowledgments
The authors are grateful for the kind cooperation of all subjects performing this study.

References