Mortality in Neonatal Intensive Care Units in Iran: A Systematic Review and Meta-Analysis

Parviz Karimi¹, Leily Mahmudi², Milad Azami³, Gholamreza Badfar⁴*

¹. Department of Pediatrics, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
². Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
³. Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
⁴. Department of Pediatrics, Behbahan Faculty of Medical Sciences, Behbahan, Iran

ABSTRACT

Background: Neonatal mortality rate is an important health index. The present study was conducted to determine the mortality rate and its causes in neonatal intensive care units (NICUs) in Iran.

Methods: Online search was done without time limit until June 2018 in several databases, such as PubMed, Web of Science (ISI), Scopus, Magiran, Barakat Knowledge Network System, SID, Iranian National Library, Regional Information Center for Science and Technology (RICST), Google Scholar search engine, and Iranian journals. The articles were qualitatively assessed after evaluating the inclusion and exclusion criteria. The Cochran's Q test and I² index were used to determine the heterogeneity between studies. Meta-analysis was done based on a random effects model using Comprehensive Meta-Analysis Software (version 2).

Results: Thirty-one eligible studies were analyzed. The mortality rate in 24,995 neonates admitted to NICUs in Iran was estimated to be 11.40% (95% CI: 9.10-14.20). The lowest mortality rate reported as 7.70% (95% CI: 6.01-9.82) was related to the Center of Iran, and the highest mortality rate was reported as 19.26% (95% CI: 15.82-23.24) in the west of Iran. In this regard, the difference was statistically significant (P<0.001). The most common causes of mortality in NICUs in Iran were prematurity (44.14% [95% CI: 31.95-57.08]), respiratory distress syndrome (RDS) (31.93% [95% CI: 22.83-42.66]), congenital malformation (16.09% [95% CI: 12.85-19.95]), septicemia (12.66% [95% CI: 8.87-17.75]), and asphyxia (7.58% [95% CI: 4.63-12.19]).

Conclusion: The most common causes of mortality in Iranian neonates were prematurity, RDS, and congenital anomalies. We also found the mortality rate to be acceptable (11.4%). To reduce the mortality rate, we recommend performing prenatal screening tests and genetic counseling. In addition, maternal care during pregnancy should be improved to reduce premature delivery.

Keywords: Intensive care unit, Iran, Meta-analysis, Mortality, Neonatal

Introduction

Children’s health should be considered as one of the first and most important tasks of any nation, and one of the main plans of any government. Currently, the countries of the world are not ranked based on the upward trend per capita but according to decline in their child mortality (1). Extraterine occurs right after intrauterine life. The neonatal period is referred to the first 28 days of life, which is the stage of developing physiological adaptations for extraterine life. This period is a period of vulnerability, and the high neonatal mortality rates are due to the high level of vulnerability in this period (2).

Neonatal mortality rate is an important health index that reflects the health, nutrition, and healthcare system of a community. The neonatal causes of motility are generally divided into two categories, including biological and non-biological factors. Although biological factors, such as prematurity, infection, and asphyxia at birth, are the famous causes, non-biological causes are equally important, which include the socioeconomic status, gender, and mother’s level of education (3).

According to the World Health Organization, out of 130 million births per year that occur in the...
world, about four million neonates die during the first 28 days of life. Moreover, three-fourths of these deaths occur during the first week of birth, and more than one-fourth occurs during the first 24 h of birth (4). These deaths account for more than 40% of the total mortality rate of children under the age of 5 years (5, 6).

The neonatal intensive care unit (NICU) is a tertiary health care unit that provides specialized medical care for neonates, which is why the level of mortality in this section seems to be higher than other sections of medical care (7). On the other hand, the first step in reducing the mortality rate and improving the level of this index is to identify the causes of mortality (8). Therefore, identifying the major causes of neonatal death will provide the basis for proper planning to improve care systems for pregnancy, delivery, and children.

Considering the numerous studies conducted on mortality and its causes in NICUs in Iran, conducting a systematic review and meta-analysis seems necessary. A meta-analysis includes the use of specific statistical methods to summarize the results of different studies to find the most accurate form of relationship between the variables under study. These statistical methods help collect the data of various articles and summarize them, and personal opinions have no effect on this process (9-11). This study aimed to determine the mortality rate and its causes in NICUs in Iran.

Methods

Study protocol

This review article was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guideline (11). Two authors independently took all the steps. In case of disagreement between the two authors, a third author was involved.

Search strategy

To identify relevant studies, a comprehensive search was done in national and international databases, including PubMed, Web of Science (ISI), Scopus, Magiran, Barakat Knowledge Network System, SID (Scientific Information Database), Regional Information Center for Science and Technology (RICST), Iranian National Library, Google Scholar search engine, and Iranian journals. The MeSH (medical subject headings) terms were combined using Boolean operators 'OR' and 'AND'. The keywords used here were "Infant, Newborn" [MeSH], "Intensive Care Units, "Neonatal" [MeSH], "Mortality" [MeSH], "Causality" [MeSH], "Etiology" [Subheading], "Neonatal" [Text Word], and "Iran" [MeSH]. Advance search in the PubMed database is shown in Appendix 1. Online search was done without a time limit until June 2018. All references were reviewed in the selected articles to find more publications.

Inclusion and exclusion criteria

Only the studies that investigated the neonatal mortality in Iran were included. Published studies were selected in both Persian and English. The exclusion criteria were 1) duplicates, 2) non-relevant studies, 3) non-random sample size, 4) studies in other sections (other than NICU), and 5) studies on specific neonatal groups, such as preterm neonates, low birth weight (LBW) neonates, 6) population other than neonates (0-28 days), 7) non-Iranian studies, and 8) review articles, case reports, and letters to editor without quantitative data.

Study selection

First, all the related articles with an affiliation that included Iranian authors were collected, and after completing the search and exclusion of duplicates, two researchers reviewed the title and abstract independently. If there was any doubt about the worthiness of the article based on the abstract, the full text was studied, and if the full text was not available, we would contact the author.

Qualitative assessment

To assess the quality of the identified literature, the modified Newcastle Ottawa Scale for cross-sectional studies was used. This scale includes eight sections in four categories (12). The minimum and maximum scores on this checklist were 0 and 9, respectively. Accordingly, the studies were divided into three categories, including 1) low quality with a score below 5, 2) moderate quality with a score of 5-6, and 3) high quality with a score of 7-8. Finally, studies that achieved the minimum score (5) were selected for the meta-analysis.

Data Extraction

The data were extracted by a checklist that included the name of the first author, journal’s name, year of publication, year of study, location, study design, number of neonates admitted to NICUs, number of deaths, number of deaths based on gender, causes of mortality, and other information.
Data analysis

Meta-analysis was performed using Comprehensive Meta-Analysis Software (version 2). The data were combined using a random effects model. Binomial distribution was used to estimate the standard error. Results were reported based on the total prevalence, as well as subgroups, with a 95% confidence interval (CI). The Cochran’s Q test and I^2 index were used to determine the heterogeneity between studies. The Cochran’s Q test was used to assess whether the variation of tests was consistent with chance, and P-value less than 0.1 was significant for heterogeneity (13).

Considering the statistical heterogeneity between the studies, the I^2 index was used as a quantitative index instead of the chance index to estimate the variance ratio between studies ($I^2<25\%$ indicates low heterogeneity, 25-49\% indicates average heterogeneity, 50-74\% indicates considerable heterogeneity, and 75-100\% indicates high heterogeneity) (14). To assess the possible heterogeneity in mortality rates, meta-regression was performed based on the year of study, and subgroup analysis was performed based on geographical regions. Sensitivity analysis, in which one study is removed at a time, was performed to verify the stability and reliability of the data. Begg and Egger’s tests were used to assess the publication bias of studies, and P-value less than 0.05 was considered significant.

Results

Overview of Search

In the initial search, 320 studies were found to be related to neonatal mortality in Iran. After reviewing the full text of 78 relevant studies, 48 studies were excluded due to lack of necessary criteria. Finally, 31 eligible studies (27 studies for neonatal mortality and 14 studies for the causes of mortality) entered qualitative assessment stage (Figure 1). Table 1 shows the characteristics of each study.

Mortality rate in all studies

Total heterogeneity was very high in the studies ($I^2=97.39, P<0.001$). The mortality rate among 24,995 neonates admitted to NICUs in Iran was estimated to be 11.40\% (95\% CI: 9.10-14.20).

Figure 1. PRISMA Flow Diagram
The lowest and highest mortality rates were in Ardabil (43.1%) (2007-2008) and Gorgan (3.0%) (2008-2011), respectively (Figure 2).

Sensitivity Analysis and Cumulative Analysis of Neonatal Mortality

The sensitivity analysis of neonatal mortality rates in NICUs in Iran was estimated irrespective of a study at a time, and the results in Figure 3-A show that the overall result is robust. Cumulative mortality analysis based on the year of publication is shown in Figure 3-B.

Meta-regression

The meta-regression model for the relationship between the mortality rate in NICUs and the year of the study showed that the mortality rate was not significant (P=0.193) (Figure 4).

Subgroup Analysis

Overall, 13, 2, 5, 5, and 2 studies were related to the Center, South, North, West, and East of Iran, respectively. The mortality rate in NICUs is shown in Table 2. The lowest mortality rate was related to the Center of Iran (7.70% [95% CI: 6.01-9.82]), and the highest mortality rate was reported in the West of Iran (19.26% [95% CI: 15.82-23.24]). In this regard, the difference was significant (P<0.001). The subgroup analysis of mortality in NICUs based on the quality of studies showed no statistically significant difference (P=0.081) (Table 2). The mortality rates in NICUs during the

Table 1. Summary of characteristics in studies in meta-analysis

<table>
<thead>
<tr>
<th>Reference</th>
<th>First author, published year</th>
<th>Year</th>
<th>Study design</th>
<th>Region</th>
<th>Place</th>
<th>Sample size</th>
<th>Mortality rate Mortality rate</th>
<th>Most common cause of death</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>15, 16</td>
<td>Jawamardi, Z. 2008 and 2010</td>
<td>2005</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Isfahan</td>
<td>251</td>
<td>NRa</td>
<td>Prematurity</td>
<td>Moderate</td>
</tr>
<tr>
<td>17</td>
<td>Zeinazadeh, AH. 2017</td>
<td>2013-2014</td>
<td>Cross-sectional</td>
<td>North</td>
<td>Tabriz</td>
<td>891</td>
<td>68</td>
<td>Congenital malformation</td>
<td>High</td>
</tr>
<tr>
<td>18</td>
<td>Jaberi, Z. 2013</td>
<td>2003</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>485</td>
<td>56</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>18</td>
<td>Jaberi, Z. 2013</td>
<td>2005</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>747</td>
<td>53</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>18</td>
<td>Jaberi, Z. 2013</td>
<td>2006</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>520</td>
<td>49</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>18</td>
<td>Jaberi, Z. 2013</td>
<td>2004</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>884</td>
<td>44</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>18</td>
<td>Jaberi, Z. 2013</td>
<td>2007</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>600</td>
<td>40</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>18</td>
<td>Jaberi, Z. 2013</td>
<td>2002</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>470</td>
<td>36</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>18</td>
<td>Jaberi, Z. 2013</td>
<td>2008</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>720</td>
<td>34</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>18</td>
<td>Jaberi, Z. 2013</td>
<td>2009</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>668</td>
<td>32</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>18</td>
<td>Jaberi, Z. 2013</td>
<td>2010</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>735</td>
<td>31</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>18</td>
<td>Jaberi, Z. 2013</td>
<td>2001</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>368</td>
<td>25</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>20</td>
<td>Safari, H. 2009</td>
<td>2006-2008</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>1017</td>
<td>108</td>
<td>RDS b</td>
<td>Moderate</td>
</tr>
<tr>
<td>21</td>
<td>Aramesh, M R. 2014</td>
<td>2011-2012</td>
<td>Cross-sectional</td>
<td>South</td>
<td>Ahvaz</td>
<td>1620</td>
<td>284</td>
<td>Prematurity</td>
<td>Moderate</td>
</tr>
<tr>
<td>22</td>
<td>Arif Nejad, M. 2016</td>
<td>2014</td>
<td>Cross-sectional</td>
<td>East</td>
<td>Zabol</td>
<td>NR</td>
<td>110</td>
<td>Prematurity</td>
<td>Moderate</td>
</tr>
<tr>
<td>23</td>
<td>Ziba, M. 2008</td>
<td>2007</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Kashan</td>
<td>700</td>
<td>63</td>
<td>Prematurity</td>
<td>Moderate</td>
</tr>
<tr>
<td>24</td>
<td>Fallahi, M. 2009</td>
<td>2004-2007</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Tehran</td>
<td>NR</td>
<td>60</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>25</td>
<td>Sareshtedari, M. 2009</td>
<td>2010</td>
<td>Cross-sectional</td>
<td>Center</td>
<td>Qazvin</td>
<td>225</td>
<td>50</td>
<td>RDS</td>
<td>High</td>
</tr>
<tr>
<td>26</td>
<td>Bala Ghafari, A. 2010</td>
<td>2003-2006</td>
<td>Cross-sectional</td>
<td>North</td>
<td>Sari</td>
<td>1238</td>
<td>222</td>
<td>RDS</td>
<td>High</td>
</tr>
<tr>
<td>27</td>
<td>Hoseini, BL. 2015</td>
<td>2006-2013</td>
<td>Cross-sectional</td>
<td>East</td>
<td>Sabzevar</td>
<td>3667</td>
<td>375</td>
<td>RDS</td>
<td>High</td>
</tr>
<tr>
<td>28</td>
<td>Mirfazeli, A. 2014</td>
<td>2008-2011</td>
<td>Cross-sectional</td>
<td>North</td>
<td>Gorgan</td>
<td>3195</td>
<td>95</td>
<td>RDS</td>
<td>High</td>
</tr>
<tr>
<td>29</td>
<td>Basiri, B. 2015</td>
<td>2012</td>
<td>Cross-sectional</td>
<td>West</td>
<td>Hamadan</td>
<td>492</td>
<td>134</td>
<td>Prematurity</td>
<td>High</td>
</tr>
<tr>
<td>31</td>
<td>Azami M. 2018</td>
<td>2015-2016</td>
<td>Cross-sectional</td>
<td>South</td>
<td>Ahvaz</td>
<td>1040</td>
<td>123</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>32</td>
<td>Sabzehei MK. 2018</td>
<td>2015-2016</td>
<td>Cross-sectional</td>
<td>West</td>
<td>Hamadan</td>
<td>600</td>
<td>78</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>33</td>
<td>Babaie H. 2018</td>
<td>2014</td>
<td>Cross-sectional</td>
<td>West</td>
<td>Kermanshah</td>
<td>956</td>
<td>195</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>33</td>
<td>Babaie H. 2018</td>
<td>2015</td>
<td>Cross-sectional</td>
<td>West</td>
<td>Kermanshah</td>
<td>1012</td>
<td>188</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>33</td>
<td>Babaie H. 2018</td>
<td>2016</td>
<td>Cross-sectional</td>
<td>West</td>
<td>Kermanshah</td>
<td>978</td>
<td>183</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>34</td>
<td>Taheri F. 2007</td>
<td>2005-2006</td>
<td>Cross-sectional</td>
<td>East</td>
<td>Birjand</td>
<td>445</td>
<td>92</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Notes:
a Number; b Not reported; c Respiratory distress syndrome

*Reference:
Table 2. The mortality rates in NICUs during the...
Table 2. Mortality in neonatal intensive care unit (NICU) based on region and quality of studies and most common causes of mortality in NICUs in Iran

<table>
<thead>
<tr>
<th>Variable</th>
<th>Studies (n)</th>
<th>Sample (n)</th>
<th>Heterogeneity</th>
<th>95% CI</th>
<th>Prevalence (%)</th>
<th>Meta-regression</th>
<th>Bias test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trend</td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td>13</td>
<td>81.39</td>
<td>621</td>
<td>97.66</td>
<td><0.001</td>
<td>6.01-9.82</td>
<td>-</td>
</tr>
<tr>
<td>East</td>
<td>2</td>
<td>41.12</td>
<td>467</td>
<td>97.56</td>
<td><0.001</td>
<td>7.07-27.81</td>
<td>-</td>
</tr>
<tr>
<td>North</td>
<td>5</td>
<td>6046</td>
<td>598</td>
<td>99.14</td>
<td><0.001</td>
<td>5.82-31.03</td>
<td>-</td>
</tr>
<tr>
<td>South</td>
<td>2</td>
<td>2660</td>
<td>407</td>
<td>93.63</td>
<td><0.001</td>
<td>9.76-21.85</td>
<td>-</td>
</tr>
<tr>
<td>West</td>
<td>5</td>
<td>4638</td>
<td>778</td>
<td>90.11</td>
<td><0.001</td>
<td>15.82-23.24</td>
<td>-</td>
</tr>
<tr>
<td>Year of studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001-2005</td>
<td>6</td>
<td>2942</td>
<td>192</td>
<td>86.38</td>
<td><0.001</td>
<td>4.56-9.67</td>
<td>-</td>
</tr>
<tr>
<td>2006-2010</td>
<td>13</td>
<td>6364</td>
<td>734</td>
<td>97.26</td>
<td><0.001</td>
<td>7.74-18.17</td>
<td>-</td>
</tr>
<tr>
<td>2011-2016</td>
<td>8</td>
<td>8100</td>
<td>692</td>
<td>94.40</td>
<td><0.001</td>
<td>12.39-20.02</td>
<td>-</td>
</tr>
<tr>
<td>Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>22</td>
<td>20709</td>
<td>2205</td>
<td>97.61</td>
<td><0.001</td>
<td>8.07-13.88</td>
<td>-</td>
</tr>
<tr>
<td>Moderate</td>
<td>5</td>
<td>4286</td>
<td>666</td>
<td>94.82</td>
<td><0.001</td>
<td>9.85-20.96</td>
<td>-</td>
</tr>
<tr>
<td>Most common causes of mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prematurity</td>
<td>17</td>
<td>1008</td>
<td>486</td>
<td>93.18</td>
<td><0.001</td>
<td>31.95-57.08</td>
<td>Asc⁴</td>
</tr>
<tr>
<td>Congenital malformation</td>
<td>13</td>
<td>2300</td>
<td>356</td>
<td>78.19</td>
<td><0.001</td>
<td>12.85-19.95</td>
<td>16.09</td>
</tr>
<tr>
<td>Respiratory distress syndrome</td>
<td>11</td>
<td>2035</td>
<td>691</td>
<td>94.85</td>
<td><0.001</td>
<td>22.83-42.66</td>
<td>31.93</td>
</tr>
<tr>
<td>Septicemia</td>
<td>11</td>
<td>1921</td>
<td>276</td>
<td>86.22</td>
<td><0.001</td>
<td>8.87-17.75</td>
<td>12.66</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>4</td>
<td>979</td>
<td>31</td>
<td>83.41</td>
<td><0.001</td>
<td>1.82-10.04</td>
<td>4.35</td>
</tr>
<tr>
<td>Asphyxia</td>
<td>10</td>
<td>1963</td>
<td>141</td>
<td>87.27</td>
<td><0.001</td>
<td>4.63-12.19</td>
<td>7.58</td>
</tr>
<tr>
<td>Disseminated intravascular coagulation</td>
<td>2</td>
<td>301</td>
<td>13</td>
<td>90.58</td>
<td><0.001</td>
<td>3.50-10.15</td>
<td>6.01</td>
</tr>
<tr>
<td>Most common causes of mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic disease</td>
<td>4</td>
<td>1252</td>
<td>26</td>
<td>14.31</td>
<td>0.321</td>
<td>1.45-3.36</td>
<td>2.21</td>
</tr>
<tr>
<td>Meconium aspiration syndrome</td>
<td>4</td>
<td>1127</td>
<td>15</td>
<td>0</td>
<td>0.581</td>
<td>0.86-2.34</td>
<td>1.42</td>
</tr>
<tr>
<td>Intraventricular hemorrhage</td>
<td>2</td>
<td>689</td>
<td>13</td>
<td>94.35</td>
<td><0.001</td>
<td>0.14-26.06</td>
<td>0.22</td>
</tr>
</tbody>
</table>

*a*Number, *b*Confidence interval, *c*Ascending, *d*Descending

Figure 2. Mortality rate in neonatal intensive care units in Iran; random effects model; * assessment of mortality rates in studies by Jabari Z. et al. and Babaei H. et al. during several years.
Figure 3. Sensitivity analysis (A) and cumulative analysis (B) of mortality rate in neonatal intensive care units in Iran.
Causes of Mortality

The most common causes of mortality in NICUs were prematurity (44.14% [95% CI: 31.95-57.08]), respiratory distress syndrome (RDS) (31.93% [95% CI: 22.83-42.66]), congenital malformation (16.09% [95% CI: 12.85-19.95]), septicemia (12.66% [95% CI: 8.87-17.75]), and asphyxia (7.58% [95% CI: 4.63-12.19]) (Table 2).

Publication bias

The publication bias of the studies conducted on mortality rate in NICUs in Iran was shown in the form of a funnel plot, and the P-values for Begg's and Egger's tests were 0.059 and
Discussion

The present study was the first meta-analysis performed on the mortality rate and its common causes in NICUs in Iran. This study was unique because it included the neonates of all birth weights. In this study, the mortality rate among 24,995 neonates in NICUs in Iran was estimated to be 11.4% based on a random effects model.

Studies that report the results of all neonates admitted to NICUs and include all deaths in the hospital have reported the lowest mortality rate (35-41). The neonatal mortality rates in the NICU reported in different countries were 0.2% in Israel (35), 4-7.6% in Canada (36-37), 7.9% in Australia (38), 8.9% in Portugal (39), 22.4% in Saudi Arabia (40), and 29.1% in Egypt (41). This rate is reported to be 0.2% to 29% worldwide (35-47). The mortality rate in other studies includes LBW neonates (8-44%) (48-50), extremely preterm neonates (8-18.8%) (51-52), premature neonates (20.6%) (53), and very LBW neonates (34.6%) (54-57).

In a review article, the overall mortality rate in NICU in developed countries was 4% to 46%, and it was reported as 0.2% to 64.4% in developing countries (6). On the contrary, premature and LBW had more severe problems and a higher risk of death. However, recent studies have also emphasized on the prognostic differences between neonates born with similar weight in different NICUs (6, 58).

In addition to differences in population risk, such differences are also related to the difference in equipment, type, and severity of disease in admitted neonates, as well as the performance of physicians and neonatal nurses (59). Comparing the results of this study with global statistics, we find that Iran is in a better condition than other developing countries in this regard, but more efforts are required to reach the level of developed countries.

In the present study, the significant cause of heterogeneity between studies was the location of studies. The mortality rate in the West of Iran was significantly higher than that of the central regions, which could indicate the differences in the equipment or performance of physicians and neonatal nurses in different regions of Iran. In the present study, the most common cause of mortality in Iranian neonates was prematurity, accounting for about half of the deaths. This result is consistent with the results of several studies from other countries (36-38).

Although the mortality rate varies in different NICUs, it remains high in some developed countries (6). Prematurity is a very common etiology for neonatal deaths because most of the neonates who died in hospital (35, 37) were LBW neonates (49) or very LBW neonates (33) who were all prematurely born. This can be attributed to the high prevalence of preterm delivery. In fact, in 2005, the World Health Organization estimated that 12.9 million births of all births (9.6%) in the world were premature (60). In addition, the prevalence rate of preterm delivery in Iran was reported to be 9.2% in a review article, which is close to global statistics (61).

International organizations, such as the World Health Organization and the United Nations International Children’s Emergency Fund, consider standards for effective health services in hospitals and health centers. On the other hand, the birth of a premature infant is still associated with separation from the family and admission to the NICU, which can impose a lot of stress on parents (62).

The second most common cause of mortality in the present study was RDS, which accounts for more than one-third of the cases. The findings of studies in other countries are consistent with the results of the present study (47, 55, 6). The RDS is one of the major causes of neonatal mortality worldwide. However, limited information is available regarding the RDS-specific mortality rate in low-income countries. Improving prenatal care and reducing risk factors, as well as joint use of surfactants and anabolic steroids, are likely to provide better outcomes for neonates with RDS (8).

According to the results, congenital anomaly is another common cause of mortality in Iranian neonates. These results indicate that congenital anomalies are the major causes of admission to NICU and death, and they show the importance of developing strategies to reduce the incidence of congenital anomalies and improve prenatal diagnosis, which were differently reported in other studies (63-64). Infection and asphyxia at birth (the major cause of hypoxic-ischemic encephalopathy) were also significantly related to the causes of NICU mortality. This indicates the fact that several causes of neonatal death may be preventable (36).

The publication bias in the studies of mortality rate in NICUs in Iran was not significant. However, in survey studies, bias is more likely to occur as there is an increased chance of publishing articles that have a positive result, and such studies are
more commonly observed in the search. However, publication bias was rejected in the present study, which is associated with the causes of the mortality rate.

Limitations
One of the limitations of the present study was the failure to differentiate the mortality rate according to gender in previous studies. Another limitation was the fact that some of the less frequent common causes of mortality were mentioned as "other causes" in most studies, which could not be analyzed. In addition, the present study failed to provide a statistical indication of early and delayed mortality rate due to the lack of such statistics in previous studies, which was considered as another limitation of this study.

Conclusion
The most common causes of death in the present study were prematurity (44.14%), RDS (31.93%), congenital anomalies (16.09%), and septicemia (12.66%). We also noted the rate of mortality to be acceptable (11.4%). To reduce this rate, we recommend performing prenatal screening tests and genetic counseling. In addition, maternal care during pregnancy should be improved to reduce preterm delivery. The NICUs require a sufficient number of skilled nurses and physicians, since ignoring the ratio of caregivers to patients due to financial problems may lead to major health problems.

Acknowledgments
Hereby, we thank Behbahan Medical School for funding this study.

Conflicts of interests
There are no conflicts of interest among the authors of this study.

Financial support
Behbahan Faculty of Medicine supported this project financially.

Appendix 1. PubMed combination search
1. exp "Infant, Newborn" [MeSH]
2. exp "Neonatal" [Text Word]
3. exp "Intensive Care Units, Neonatal" [MeSH]
4. exp "Mortality" [MeSH]
5. exp "Causality" [MeSH]
6. exp "Etiology" [Subheading]
7. exp "Iran" [MeSH]
8. 1 OR 2 OR 3
9. 5 OR 6
10. 4 AND 7

References

